Saturday, 27 June 2015

New optics technology opens door to high-resolution atomic-level hard X-ray studies

by Science Daily

An international collaboration involving two U.S. Department of Energy national laboratories has demonstrated a way to reach dramatically smaller focal sizes for hard X-rays, opening the door to research with hard X-rays at atomic-scale.

For the first time, the full performance at wavelength of a wedged MLL has been characterized and was found to agree well with calculations. An improved efficiency due to wedging was verified together with a measured focus of 26 nm. Verification of the expected improvement in efficiency arising from the wedging constitutes proof of principle that wedging is a viable technology, thereby constituting a significant advancement toward a new frontier in X-ray nanofocusing.

The ability to study materials, environmental, and biological systems at the atomic level with high efficiency is a current roadblock to solving many of today’s greatest scientific challenges in energy, health, security and the environment. Currently, optical efficiency drops dramatically for studies on areas smaller than 10 nm.

This new lens design will make small spot sizes of below 10 nm routine. Coupled with the unique properties of hard x-rays, namely penetration of complex environments and operation in electric and magnetic fields, such optics will enable highest-resolution imaging of systems under in-situ and in-operando conditions, such as operating batteries and catalysts. It could enable the manipulation of the inner workings of matter to understand, engineer, or eliminate defects, improve manufacturing and help develop therapies for disease.The need for this optics technology will grow with the construction of the next-generation of light sources, including the proposed upgraded Advanced Photon Source at Argonne National Laboratory. New synchrotron light sources using multi-bend achromat technology and X-ray Free Electron Lasers create much brighter X-rays with higher fluxes. Wedged MLLs are expected to enable the maximization of this technology at the atomic scale.


No comments:

Post a Comment